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Experiments on underdoped cuprate superconductors suggest an intricate relation between the normal-state
Nernst effect and stripe order. The Nernst signal appears enhanced near 1/8 hole doping and its onset tempera-
ture scales with the stripe-ordering temperature over some range of doping. Here, we employ a phenomeno-
logical quasiparticle model to calculate the normal-state Nernst signal in the presence of stripe order. We find
that Fermi pockets caused by translational symmetry breaking lead to a strongly enhanced Nernst signal, with
a sign depending on the modulation period of the ordered state and other details of the Fermi surface. This
implies differences between antiferromagnetic and charge-only stripes. We also analyze the anisotropy of the
Nernst signal and compare our findings with recent data from La1.6−xNd0.4SrxCuO4 and YBa2Cu3Oy.
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I. INTRODUCTION

The pseudogap regime of cuprate superconductors1 has
remained mysterious despite more than two decades of in-
tense research. Among the various proposed explanations for
the observed suppression of spectral weight below the
doping-dependent pseudogap temperature T� are phase-
incoherent Cooper pairing, symmetry-breaking orders com-
peting with superconductivity, exotic fractionalized states,
and short-range singlet correlations as precursor to the half-
filled Mott insulator.2,3

Nernst effect measurements have been established as an
interesting probe of pseudogap physics. The Nernst signal,
measuring the transverse voltage induced by a thermal gra-
dient, is typically small in conventional metals. Large posi-
tive Nernst signals are known to arise from the motion of
vortices in type-II superconductors.4,5 In underdoped cu-
prates, with experiments performed on a variety of different
families, the Nernst signal has been found to rise upon cool-
ing, with an onset temperature significantly above the super-
conducting Tc �although it is difficult to define a sharp
onset�.6,7 The data have been commonly interpreted as evi-
dence for fluctuating Cooper pairs above Tc; this interpreta-
tion appears supported by the observation of fluctuating dia-
magnetism which often varies in proportion to the Nernst
coefficient.8 As a function of doping, the onset temperature
of the Nernst signal is maximum around 10–15 % doping
and appears to lie below the T� line identified by other
probes, in particular, for doping x�10%. A plausible conclu-
sion is that fluctuating Cooper pairs do not account for all of
the cuprate pseudogap. On the theory side, the Nernst signal
arising from Gaussian �i.e., amplitude� pairing fluctuations
has been calculated9,10 and theoretical treatments of short-
lived vortex �i.e., phase� fluctuations have been put forward
as well.11,12 Meanwhile it has also been established that a
large Nernst signal can occur in metals with a small Fermi
energy, in particular, in the presence of electron and hole
pockets.13 In underdoped cuprates, this situation has been
discussed especially in a scenario of d-density-wave
order.14–16

Recently, a more detailed investigation17 of the Nernst
effect in the La2−xSrxCuO4 �or “214”� family revealed a new

piece of information. In La1.6−xNd0.4SrxCuO4, which is
known to display static stripe order below a temperature Tch,
an additional �positive� peak or shoulder in the temperature
dependence of the Nernst signal could be identified, located
at an elevated temperature and distinct from the low-
temperature signal ascribed to superconducting fluctuations.
As this high-temperature feature appears to follow the
charge-ordering temperature Tch upon variation in the doping
level, it has been attributed to a Fermi-surface reconstruction
due to density-wave order.

A Fermi-surface reconstruction due to density-wave order
also appears as a candidate explanation for quantum oscilla-
tions, observed in large fields on underdoped YBa2Cu3Oy
samples.18–20 Indeed, neutron-scattering experiments indicate
field-induced incommensurate spin-density-wave order in
this cuprate family.21 On the theory side, concrete symmetry-
breaking patterns have been proposed to explain the ob-
served quantum oscillations.22–24 Among the various order-
ing phenomena, stripe order plays a prominent role. While
first established in certain 214 cuprates and initially consid-
ered to be special to this family, signatures of �possibly fluc-
tuating or disordered� stripes have meanwhile been found in
a variety of cuprates over a significant doping range.25,26

Recent transport phenomenology in YBa2Cu3Oy at hole
concentration x=0.12 has shown close similarities to the 214
cuprates, including a sign change in the Seebeck coefficient
at T�50 K and a strongly enhanced normal-state Nernst
signal accessed by strong magnetic fields of up to 28 T.27

Interestingly, the sign of the normal-state Nernst effect is
negative even at lowest temperatures and theoretical expla-
nations of how the sign of the Nernst coefficient is related to
Fermi-surface reconstruction are lacking.

Taken together, these developments suggest that density-
wave order plays a vital role in the phenomenology of un-
derdoped cuprates. It is thus of timely importance to clarify
which experimental results can be understood in terms of
density-wave order of conventional quasiparticles and where
physics beyond the quasiparticle picture needs to be invoked.
In this paper we shall present a theoretical calculation of the
normal-state Nernst signal in the presence of unidirectional
spin and charge-density-wave �i.e., stripe� order.
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In fact, in Ref. 28, it was argued that charge-density-wave
fluctuations were important for the pseudogap Nernst signal
and a general hydrodynamic discussion was presented at
moderately high temperatures above a charge-ordering criti-
cal point. However, a specific comparison with experiment
requires that we go to lower temperatures and consider the
coherent dynamics of electronic quasiparticles. Such an
analysis was provided for the electron-doped cuprates in Ref.
29, where it gave a good account for the experimental
observations.30

It is the purpose of the present paper to apply such a
quasiparticle analysis to the hole-doped case, by combining a
mean-field description of stripe order with a Boltzmann ap-
proach to transport. At low temperatures, the normal-state
Nernst signal varies linearly with T, and we shall discuss the
sign and magnitude of this piece in connection with the
Fermi-surface pockets induced by the density-wave order.
The focus will be on order with real-space periods 4 �8� and
8 �16� in the charge �spin� sector, being appropriate for 1/8-
doped La2−xSrxCuO4 and YBa2Cu3Oy close to y=6.5, respec-
tively. In the light of a recent experiment31 which examined
the spatial anisotropy of the Nernst coefficient in YBa2Cu3Oy
we shall calculate this quantity for thermal gradients both
perpendicular and parallel to the stripes.

We note that recent papers have provided a detailed dis-
cussion of the effect of stripe order on quantum oscillations22

and the Hall effect,32 using mean-field models similar to ours
below. For both observables, reasonable agreement with ex-
periment was pointed out and we refer the reader to those
papers for details. Below, we shall make use of the results of
Refs. 22 and 32 when appropriate.

Outline

The remainder of this paper is organized as follows. In
Sec. II we describe the microscopic mean-field model for
stripe order and discuss the Boltzmann transport formalism
which we shall use to evaluate the low-temperature Nernst
effect. Section III contains our main results for the Fermi-
surface reconstruction and the Nernst signal in stripe phases
with a real-space period of eight sites in the spin sector, this
includes the doping level of 1/8 where stripes are particularly
stable. We shall discuss the effect of modulations in the spin
and charge sectors separately and also distinguish between
site-centered and bond-centered stripes. These considerations
will be extended to doping below 1/8 in Sec. IV, where the
real-space modulation period is larger. A summary and com-
parison to experimental data is given in Sec. VI.

II. MODEL AND FORMALISM

To calculate the normal-state quasiparticle Nernst effect,
we consider electrons moving on a square lattice of unit lat-
tice constant, with the two-dimensional dispersion given by

�k = − 2t1�cos kx + cos ky� − 4t2 cos kx cos ky

− 2t3�cos 2kx + cos 2ky� . �1�

For all numerical calculations, we will use the parameters
t1=0.38 eV, t2=−0.32t1, and t3=−0.5t2,33,34 chosen to repro-

duce the Fermi surface measured in photoemission experi-
ments. The two-dimensional electron density is n=1−x per
unit cell. We shall assume a quasiparticle description with
the dispersion, Eq. �1�, to be a reasonable approximation in
the regimes of interest, i.e., either at low temperatures and
strong fields or above the superconducting Tc at smaller
fields. Effects of pseudogap physics beyond quasiparticles,
such as phase-fluctuating Cooper pairs, will be briefly dis-
cussed in Sec. V.

A. Stripe order

The term “stripe” shall be used synonymously for unidi-
rectional spin-density-wave and charge-density-wave orders.
A spin-density wave �SDW� is specified by a vector order
parameter �s��r ,��, �=x ,y ,z, and the spin-density modula-
tion is given by

�S��R,��� = Re�eiQs·R�s��R,��� �2�

with ordering wave vector Qs. As charge-density wave
�CDW� we will denote a state with modulations in observ-
ables � which are invariant under spin rotation and time re-
versal, such as site or bond charge density, kinetic energy, or
pairing amplitude. A CDW is described by a scalar order
parameter �c�r ,��, such that

���R,��� = �0 + Re�eiQc·R�c�R,��� , �3�

where �0 is the background density. If the SDW order in Eq.
�2� is collinear, it has an associated spin-singlet order param-
eter, i.e., it induces a CDW with wave vector Qc=2Qs.

35

Historically, incommensurate SDW order in cuprates was
first found36 in neutron-scattering experiments on
La1.6−xNd0.4SrxCuO4, with wave vectors Qsx
=2��0.5�	s ,0.5� and Qsy =2��0.5,0.5�	s�. Corresponding
charge order at Qcx=2���	c ,0� and Qcy =2��0, �	c�, with
	s=2	c, was detected as well. Subsequently, such stripe or-
der, with coexisting SDW and CDW, was also established to
exist in La1.8−xEu0.2SrxCuO4 and La2−xBaxCuO4. Whereas in
La2−xBaxCuO4 the order is confined to a narrow doping range
around x=1 /8, it appears to extend from low doping up to
20% in La1.6−xNd0.4SrxCuO4 and La1.8−xEu0.2SrxCuO4.26 In
La2−xSrxCuO4 with x�0.13 and in YBa2Cu3O6.35, quasistatic
SDW order was found37–39 while for larger doping incom-
mensurate dynamic spin fluctuations exist.40–42 In both cases,
strong magnetic fields applied to superconducting samples
can enhance and even induce SDW order,21,43,44 suggesting a
competition between SDW and superconducting orders.
Static order in the charge sector has not been detected in
La2−xSrxCuO4 while reports on charge order in YBa2Cu3Oy
remained controversial.38,45 Using scanning tunneling mi-
croscopy �STM� techniques, static short-range bond-centered
modulations in the charge sector have been detected on the
surface of Bi2Sr2CaCu2O8+
 and Ca2−xNaxCuO2Cl2.46,47 The
modulation period was close to four lattice spacings, similar
to the charge order in striped 214 compounds with doping
x�1 /8. The STM data appear to be well described by modu-
lations in the kinetic-energy terms,48 which moreover appear
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to have a large d-wave component.49 Note that in both
Bi2Sr2CaCu2O8+
 and Ca2−xNaxCuO2Cl2 the charge order ap-
pears to exist without long-range magnetic order, although
spin-glasslike magnetism has been reported in
Ca2−xNaxCuO2Cl2.50 With regard to Nernst effect and quan-
tum oscillation measurements, we may expect modulations
in the spin sector to be important for the Fermi-surface re-
construction, as SDW order occurs in both 214 and
YBa2Cu3Oy compounds in strong fields.

B. Mean-field theory

The ordered states shall be described in a mean-field pic-
ture, where quasiparticles with the dispersion in Eq. �1� are
subject to a periodic modulation in the site chemical poten-
tial or bond kinetic energy. Philosophically, we assume that
both the quasiparticles and the modulation arise from a mi-
croscopic Hubbard or t-J model at intermediate or strong
coupling. Suitable self-consistent mean-field calculations
have been reported in the literature, with results which ap-
pear broadly consistent with the experimental phenomenol-
ogy �for a review, see, e.g., Ref. 26�. Here, we find it appro-
priate to combine this previous knowledge with experimental
input �e.g., on the wave vector and magnitude of modula-
tions� and hence we will add the periodic modulations to the
quasiparticle Hamiltonian “by hand,” i.e., without perform-
ing a self-consistent evaluation. We note that SDW order
can, in principle, be obtained in a controlled manner at weak
coupling,51–53 whereas CDW order in cuprates is likely a
strong-coupling phenomenon, with additional stabilization
by lattice degrees of freedom.25,26

In the spin sector, we shall restrict our attention to collin-
ear order. Such order leads to a scattering potential Vs that
connects a quasiparticle with momentum k with all quasipar-
ticle momenta k�nQ for integer n. �The same applies to
charge order with wave vector Qc and a scattering potential
Vc.� As has been discussed for Cr, the Fermi-surface recon-
struction due to collinear SDW order is caused by a hierar-
chy of gaps of order 2�m�2Vs

m / tm−1 opening at the crossing
points of bands �k+nQ and �k+�n�m�Q, where Vs is the ampli-
tude of the spin potential.52 As long as Vs, Vc t, the Fermi
surface is well described by including the lowest-order gap
only and we will neglect all matrix elements with m�1 in
the scattering potentials Vc and Vs. In the mean-field Hamil-
tonian, we shall use the following terms describing the den-
sity waves; cartoons pictures of the resulting stripe order are
shown in Fig. 1.

1. Charge-density wave

A CDW is described by

V̂1 = 	
k,�

�Vc�k�ck+Qc�
† ck� + H.c.� , �4�

where Vc�k� is, in general, complex. For the site-centered
case, we modulate the on-site �Hartree-Fock� chemical po-
tentials such that maxima/minima are located on lattice sites,
i.e., with a real Vc�k�
−Vc. A bond-centered CDW with
on-site modulations is characterized by Vc�k�
−Vce

−iQc/2;

for modulations in the kinetic energy with primarily d-wave
form factor we have Vc�k�=−
t�cos�kx+

Qc

2 �−cos ky�e−iQc/2;
in both cases Qc= �Qc ,0�. In the following, we shall prima-
rily consider the latter d-wave bond modulations, which arise
in a scenario of valence-bond solid formation55,56 and have
been argued49 to be consistent with the STM data of Ref. 47.

2. Collinear spin-density wave

Choosing the spin-quantization axis in z direction, we
have, in general,

V̂2 = 	
k,�

��Vs�k�ck+Qs�
† ck� + H.c.� . �5�

A site-centered SDW has again a real Vs�k�
Vs, whereas a
bond-centered SDW is captured by Vs�k�
−Vs�1
+e−iQc/2� / �2 cos�Qc /4��, where Qs= ���Qc /2,��. The com-
plex phases of the mean fields in Eqs. �4� and �5� have been
chosen such that the resulting order parameters �c and �s

2 are
in phase. Moreover, with positive Vc �site centered� and posi-
tive 
t �bond centered� the resulting modulations are such
that the electron density is small where the magnitude of the
magnetic moment is small �i.e., near the antiphase domain
walls�,57 as in Fig. 1.

As the unidirectional density waves break the 90° rotation
symmetry of the underlying square lattice, the s-wave and
dx2−y2 representations of the point-group mix. This implies
that the solution of a mean-field Hamiltonian with modulated
on-site potentials �which may be dubbed s wave� will also
contain symmetry-compatible modulations on the bonds,
with inequivalent horizontal and vertical bonds �i.e., a

c)

b)

a)

FIG. 1. Real-space structure of �a� site-centered and ��b� and �c��
bond-centered stripes with period-4 �period-8� order in the charge
�spin� sector. Shown are spin and charge distributions, with the
circle radii corresponding to on-site hole densities. In panel �c�,
showing “valence-bond” stripes �Refs. 49 and 54�, the structure of
spin-singlet bond modulations is shown as well which has a domi-
nant d-wave form factor.
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d-wave component�; vice versa, the solution of a mean-field
Hamiltonian with d-wave bond modulations will display a
finite on-site charge-density modulation. Also, solving a
Hamiltonian with a collinear SDW modulation only will lead
to a CDW with Qc=2Qs.

In Secs. III and IV we shall present results separately for
the cases of spin-only, charge-only, and combined spin and
charge modulations in the mean-field Hamiltonian. While the
charge-only case corresponds to a situation without broken
spin symmetry, the spin-only and the combined spin and
charge cases have the same symmetry but the former is to be
understood as density-wave order driven by the spin sector,
with charge order being parasitic.

C. Semiclassical transport

The Nernst effect is measured as a transverse electrical
response to a thermal gradient, which can also generate a
longitudinal electrical voltage known as thermopower. In ex-
periment, the electric field can be applied by allowing for a
weak spatial dependence in the chemical potential � �which
is then, formally, the electrochemical potential� with 2eE=
−�� while the temperature gradient describes a similar weak
spatial dependence in T. The interplay of electrical and ther-
mal effects necessarily implies three conductivity tensors �̂,
�̂, and �̂, which relate charge current J and heat current Q to
electric field, E, and thermal gradient, �T, vectors,

� J

Q
� = � �̂ �̂

T�̂ �̂
�� E

− �T
� . �6�

It is the off-diagonal component �̂ which relates electrical
currents and fields to thermal currents and gradients. To mea-
sure this quantity, appropriate boundary conditions for the
currents and applied fields have to be obeyed. The Nernst
response is defined as the electrical field induced by a ther-
mal gradient in the absence of an electrical current and is

given in linear response by the relation E=−�̂�T. In ab-
sence of charge current �i.e., when J=0�, Eq. �6� yields

E = �̂−1�̂ � T . �7�

Therefore, the Nernst signal defined as the transverse voltage
Ey generated by a thermal gradient �xT reads

�yx = −
�xx�yx − �yx�xx

�xx�yy − �xy�yx
�8�

and �xy is obtained from x↔y. For a magnetic field B� =Bẑ in
z direction, the Nernst coefficient is usually defined as �yx
=�yx /B, which tends to become field independent at small B.
We employ a sign convention such that the vortex Nernst
coefficient is always positive. This is achieved by the experi-
mentally used convention that the three vectors E, �T, and B
form a right-handed system for the measurements of both �xy
and �yx. In general, the Nernst signal can be negative or
positive, for example, if it is caused by the flow of charged
quasiparticles.

We assume that the low-temperature dc transport can be
described by the Boltzmann equation in relaxation-time
approximation58,59

−
e

�c
�vk � B��k +

1

�k
�gk = − evkE − ��k − ��vk

�rT

T
�

��−
� fk

0

��k
� . �9�

The right-hand side has been linearized in both temperature
gradient and electric field, assuming that those are weak and
spatially uniform. The solution of Eq. �9� is the deviation
g�k� of the nonequilibrium distribution function f�k� from
the equilibrium Fermi distribution f0�k�= �1+exp����k
−����−1. We further assume, as is appropriate for low tem-
peratures, that the relaxation is mainly due to randomly dis-
tributed impurities with a low density,60 leading to a constant
relaxation time �k
�0. This approximation is known to fail
in presence of antiferromagnetic fluctuations, which lead to
interaction induced drag between quasiparticles.61 Therefore,
the assumption of a single-particle relaxation rate is re-
stricted to temperatures below the ordering temperatures of
spin and charge orders.

From Eq. �9�, the nonequilibrium distribution function
g�k� is now readily obtained as

gk = Ak
−1− evkE − ��k − ��vk

�rT

T
��−

� fk
0

��k
� , �10�

where the operator

Ak = −
e

�c
�vk � B��k +

1

�k
� �11�

has been defined. From the solution in Eq. �10�, the electrical
and thermal currents J and Q can be calculated as

J = − e	
k

vkgk,

Q = 	
k

vk�	k − ��gk. �12�

According to Eq. �6�, the transport tensors are determined
from

��� = 2e2	
k

vk
�Ak

−1vk
��−

� fk
0

��k
� ,

��� = −
2e

T
	
k

vk
���k − ��Ak

−1vk
��−

� fk
0

��k
� . �13�

In the usual manner, Ak
−1 can be arranged as a perturbative

expansion in the magnetic field B �Ref. 58� in order to obtain
transport coefficients that do not depend on B. For this pur-
pose we define Ak=Kk+Mk

B, where Kk=�k
−1 and Mk

B the rest.
Then
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Ak
−1 = Kk

−1 − Kk
−1Mk

BKk
−1 + O�B2� . �14�

The diagonal entries in Eq. �13� are obtained from the zeroth
order in B in Eq. �14� while the lowest-order contribution to
the off-diagonal coefficients arises from the linear order in B
in the expansion, Eq. �14�. To this accuracy, expression �13�
can be simplified in form of the expressions

�xx =
2e

T
	
k,n

� fk
0

��n�k�
�n�k��0�vk

x�2,

�xy =
2e2B

T�c
	
k,n

� fk
0

��n�k�
�n�k��0

2vk
xvk

y �vk
y

�kx
− vk

x �vk
y

�ky
� ,

�xx = − 2e2	
k,n

� fk
0

��n�k�
�0�vk

x�2,

�xy = − 2
e3B

�c
	
k,n

� fk
0

��n�k�
�0

2vk
xvk

y �vk
y

�kx
− vk

x �vk
y

�ky
� , �15�

which is the result we employ in the rest of the paper. On
general grounds, the Hall conductivities obey �xy =−�yx.
Such a relation does not hold for �xy,yx in general. In the
low-T limit of the Boltzmann Eq. �15�, however, �xy =−�yx
follows from Eq. �16� below.

It is important to note that the transport quantities in Eq.
�15� describe transport within a single layer of a cuprate
sample only. Apart from weak interlayer coupling �which we
shall neglect here�, the most important aspect of multiple
layers is in the stripe directions. In 214 cuprates with a low-
temperature tetragonal �LTT� lattice structure, such as
La1.6−xNd0.4SrxCuO4, the stripe orientation of neighboring
layers is believed to follow the LTT distortion in-plane pat-
tern and hence alternates from layer to layer. Thus, transport
quantities have to be averaged over neighboring layers in
order to obtain the correct bulk transport coefficients. In con-
trast, rotation symmetry breaking in YBa2Cu3Oy compounds
can be expected to have the same orientation in all layers,
due to the presence of CuO chains in this material. Conse-
quently, a single-layer description of transport is sufficient.
In the following, we shall discuss both the single-layer
Nernst coefficients �yx,xy as well as a symmetrized version
�= ��xy +�yx� /2 obtained from averaging over layers.

Let us make a few more remarks on the validity of the
transport Eq. �15�; a more extensive discussion can be found
in Ref. 29. By neglecting the energy dependence of the re-
laxation time,60 one neglects contributions to the Nernst sig-
nal which are proportional to the energy derivative of the
relaxation time, defined by the derivative with respect to the
position of the Fermi surface, �� /�� �EF

. This can be seen
from the Mott relation

�ij = −
�2

3

kB
2T

e
� ��ij

��
�

EF

, �16�

which is valid at temperatures sufficiently below the Fermi
temperature. By employing the Mott relation in Eq. �8�, one
can see that a sizeable contribution to the Nernst signal from

an energy dependence of the relaxation time requires that
�xx�yx and �yx�xx have the same order of magnitude. From
experiments on the hole-doped cuprates, it is known that the
contribution of −�yx /�yy is dominating the low-temperature
Nernst signal in order of magnitude,62 although this signal is
dominated by the vortex contribution. In the electron-doped
cuprates, magnetic fields can suppress the vortex contribu-
tion to the Nernst signal with a Nernst signal that remains
dominated by the contribution of �yx�xx / ��xx�yy� �Ref. 30�
and it appears reasonable to neglect an energy dependence of
the relaxation time. In addition, various contributions of in-
terband transitions to quasiparticle transport are neglected in
the transport Eq. �15�. These can result from thermal excita-
tions, magnetic breakdown, or also scattering on impurities.
We will discuss corrections due to these effects where nec-
essary. In general, such effects are small in the experimen-
tally relevant regimes as long as stripe order induces band
gaps of order 0.1 eV.

In order to integrate the transport Eq. �15� we calculated
the first-order and second-order partial derivatives of the ei-
genvalues for each k point of the reduced Brillouin zone by
an iterative procedure63 and discretized the Brillouin zone
integrals with a mesh around the Fermi surface of an energy
width proportional to temperature and extrapolated the result
to zero temperature. In this limit, it follows from Eq. �16�
that the Nernst signal becomes linear in temperature, with a
prefactor controlling sign and magnitude of the Nernst sig-
nal. The relaxation rate �0

−1 remains a parameter in this low-
temperature calculation, with the Nernst signal being propor-
tional to �0. Below we shall briefly discuss the temperature
dependence of the Nernst signal as well; there we will em-
ploy suitable phenomenological parametrizations of ��T�.

III. NERNST EFFECT FROM STRIPE ORDER FOR
x�1 Õ8

As discussed in Sec. II A, for 214 cuprates with doping
level x�1 /8 the experimentally detected modulation in the
spin sector is characterized by 	s�1 /8, i.e., the magnetic
ordering wave vector is Qs

����3 /4,1�. In this section, we
shall investigate in detail the Fermi-surface reconstruction
and the arising Nernst signal as functions of various modu-
lation strengths, keeping Qs fixed at Qs

�. Wave vectors cor-
responding to longer modulation periods and doping x
�1 /8 will be discussed in Sec. IV.

By using the stripe-induced scattering potentials defined
above, the quasiparticle dispersions needed for a semiclassi-
cal calculation can be obtained by numerical diagonalization
of the Hamiltonian matrix. The quasiparticle bands are spin
degenerate because the paramagnetic �antiferromagnetic�
stripe states are invariant under global spin flips �global spin
flips plus a translation by one lattice spacing along the stripe
direction�. Thus the spatially averaged quantities, including
the quasiparticle dispersions, cannot depend on the electron
spin. The general form of the Hamiltonian matrix for
period-8 stripe order is �with Qc

�=��1 /2,0��
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�
�k Vc

� 0 Vc 0 Vs
� Vs 0

Vc �k+��/2,0� Vc
� 0 0 0 Vs

� Vs

0 Vc �k+��,0� Vc
� Vs 0 0 Vs

�

Vc
� 0 Vc �k+�3�/2,0� Vs

� Vs 0 0

0 0 Vs
� Vs �k+��/4,�� Vc

� 0 Vc

Vs 0 0 Vs
� Vc �k+�3�/4,�� Vc

� 0

Vs
� Vs 0 0 0 Vc �k+�5�/4,�� Vc

�

0 Vs
� Vs 0 Vc

� 0 Vc �k+�7�/4,��

� . �17�

For brevity, in this matrix we dropped the momentum depen-
dence in the scattering potentials. Of course, these potentials
in some cases depend on momentum and this dependence is
easily obtained by labeling a potential connecting energies
with momenta k+q and k+q+Qc/s

� with the momentum k
+q in the matrix, Eq. �17�. In Fig. 1, the spin and charge
distributions corresponding to both bond-centered and site-
centered period-8 stripe order are sketched. Without loss of
generality, we shall choose spin potentials with Vs�0. Using
the conventions given below Eqs. �4� and �5� and Vs being
real, it follows from the modulation of the chemical potential
corresponding to Fig. 1 that Vc�k�
−Vc�0 for site
modulations,57 i.e., the s-wave part of the charge order. Its
d-wave part,49 described by bond modulations 
t, will be
chosen such that sites with large spin density are connected
by horizontal bonds �dimers�, Fig. 1�c�, which implies 
t
�0.

A. Fermi-surface reconstruction

The particular geometry of the Fermi surface resulting
from the diagonalization of Eq. �17� strongly influences the
Nernst signal. Typically, open electron orbits tend to give
small contributions to the Nernst signal since they constrain
the electronic motion mostly along one spatial direction and
lead to a small transverse flow of carriers, as we also checked
numerically. This can be understood from the expressions for
the electrical and the thermoelectrical Hall conductivities in
Eq. �15�. Their size is proportional to mass terms that mea-
sure the band curvature, which tends to be small for open
orbits as compared to closed orbits.

Concerning the Nernst signal as resulting from closed
electron orbits, a large Nernst signal resulting from quasipar-
ticles usually requires the existence of oppositely charged
carriers, as it is strictly zero in the simple Drude model as
already noted by Sondheimer.64 Generally, in any realistic
system, such a cancellation will be incomplete. As has been
discussed in Refs. 22 and 32, for the formation of closed
electron orbits in the Fermi surface, a finite spin-stripe po-
tential is required, see Fig. 2. Charge stripe order can only
produce holelike pockets which eventually vanish in the
limit of large charge stripe potential. Electronlike pockets
pinch of at the zone boundary in presence of finite spin stripe

order, becoming smaller upon increasing spin-stripe poten-
tial.

Thus, order in the spin sector seems crucial to produce a
sizable Nernst signal. These aspects motivate that we con-
centrate in the following on pure spin stripe order �in the
sense that charge order is only parasitic, see the discussion in
Sec. II B�. Later on, we also study modifications due to
charge stripe order. The impact of charge order on Fermi
surfaces as resulting from pure spin stripes is illustrated in
Fig. 3. For very large charge potential, the electronic motion
is directed along the stripe direction and closed electron or-
bits break up even in presence of sizeable spin-stripe poten-
tials, as can be seen from Fig. 4.

B. Nernst effect from spin modulations

Based on the above Fermi-pocket analysis, we consider a
situation of spin-driven stripe order first, i.e., our mean-field
Hamiltonian has modulated spin-dependent chemical poten-
tial as in Eq. �5�. �For a modulation period of 8, this will
induce weak charge order with period 4.�

(b)(a)

FIG. 2. Fermi surfaces for the bond-centered period-8 stripe
states with �a� pure bond modulation, 
t=0.05 eV and �b� pure spin
modulation, Vs=0.09 eV, plotted in the first quadrant of the Bril-
louin zone of the underlying square lattice. The Fermi surfaces are
qualitatively equivalent to those obtained from site-centered spin or
charge potentials. Without spin order �case a�, besides open orbits
only small holelike closed orbits with a large aspect ratio are
present. Spin order �case b� induces both holelike and electronlike
closed orbits.
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1. Nernst signal as a function of modulation strength

To set the stage, we concentrate on the Nernst signal near
1/8 doping, where the strong positive enhancement is ob-
served in experiments on La1.6−xNd0.4SrxCuO4.17 Our result
for the Nernst coefficient is shown in Fig. 5; note that for our
Hamiltonian the results for � /T do not depend on whether
the spin stripes are site centered or bond centered, as the
eigenvalues of the matrix in Eq. �17� do not depend on the
complex phase of Vs if Vc=0. For small values of the spin
potential, the Nernst coefficient is positive and highly en-
hanced in comparison to the nonordered state. For larger
spin-stripe potentials, the Nernst coefficient becomes nega-
tive and then again positive for even larger spin-stripe poten-
tials. These changes can be traced back to the stripe-induced
changes of Fermi pockets. Upon increasing Vs, the small
hole pockets �see, e.g., Fig. 2�b�� disappear at the maximum
of � /T in Fig. 5, whereas the remaining open orbits split and
form pockets at the minimum of � /T �not shown�. The spa-
tial anisotropy of the Nernst signal is small for all Vs.

To connect the parameter Vs to experiments, the ordered
magnetic moment may be used. Experimentally, the maxi-
mum moment in the stripe structure at doping 1/8 in 214
compounds has been estimated to be half of that of the un-

doped parent compound �roughly 0.3�B or �Sz�=0.15�,26,65

with different experimental techniques giving somewhat dif-
ferent results. �It can be expected that the moment is smaller
away from x=1 /8.� In YBa2Cu3Oy, ordered magnetism in
zero field is only observed for y�0.45 but the order appears
significantly field enhanced.21 �Based on the neutron-
scattering and �SR data of Ref. 21 one may estimate the
moment to be 0.05�B at zero field and 0.07�B at 15 T.� In
our mean-field calculation, we find that �Sz�max=0.15 corre-
sponds to a scattering potential Vs�0.1 eV for both bond
and site-centered stripes. This value of Vs is close to the
maximum in the Nernst coefficient and values of Vs beyond
this maximum correspond to unrealistically strong magnetic
order.

2. Nernst signal as a function of doping

We continue to study the doping dependence of the Nernst
coefficient for dopings x�1 /8, where the stripe period is
doping independent. Stripe order is maximally stable near
x=1 /8. Experimentally, an extrapolation of the magnetic or-
dering temperature in La1.6−xNd0.4SrxCuO4 yields a critical
doping xc=0.24 where spin stripe order is suggested to
vanish.17,66 The simplest model assumption is then a mean-
field dependence of the spin stripe order parameter, �s

��xc−x for x�xc at low T. As the order parameter is lin-
early proportional to the modulation potential Vs, we shall
employ

Vs�x� = V0
�1 − x/xc, �18�

for x below xc=0.24 and Vs=0 elsewhere while keeping the
ordering wave vector fixed at Qs

�. The amplitude V0 is set by
the maximal local moment at x=1 /8 and we choose it such
that �Sz�max=0.15 at this doping, i.e., V0=0.15 eV. In Fig. 6
we display the doping evolution of the Nernst coefficient
resulting from these assumptions, i.e., the doping axis in this
figure corresponds to a variation in both the band filling and
the stripe amplitude. As expected from the data in Fig. 5, an
enhanced positive Nernst coefficient occurs over a large dop-

(b)(a)

FIG. 3. Fermi surfaces for the bond-centered period-8 stripe
states with combined spin and charge modulation, plotted in the first
quadrant of the Brillouin zone of the underlying square lattice. �a�
Vs=0.09 eV and 
t=0.02 eV. �b� Vs=0.09 eV and 
t=0.055 eV.
With increasing bond modulation, the small holelike pockets shrink
�case a� and disappear �case b�.

(b)(a)

FIG. 4. As in Fig. 3 but for site-centered period eight stripe
order. �a� Vs=0.1 eV and Vc=0.1 eV. �b� Vs=0.1 eV and Vc

=0.15 eV. As above, with increasing charge modulation the Fermi
pockets disappear in favor of open one-dimensional orbits.

FIG. 5. Nernst effect for period-8 antiferromagnetic stripes at
doping x=1 /8 as a function of the spin modulation; the results are
identical for the site-centered and bond-centered cases. The Nernst
coefficient becomes negative at Vs�0.1 eV, corresponding to
maximal local moments of 2�B�Sz��0.3�B. Here and in the fol-
lowing, �yx is the Nernst signal for �� T � x̂. The stripes have a modu-
lation wave vector �x̂, i.e., run along ŷ, such that �xy ��yx� is defined
with �� T parallel �perpendicular� to the stripes.
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ing range, with a maximum at 1/8 doping, and little differ-
ence between site-centered and bond-centered spin stripes. In
the overdoped region, the Nernst coefficient becomes nega-
tive, as is also observed in experiment.13 At lowest tempera-
tures, the overall behavior agrees therefore well with the ex-
perimental observations in La1.6−xNd0.4SrxCuO4.17

Close to the critical doping x�xc, modifications of these
results due to magnetic breakdown have to be considered. If
modifications of the band structure by magnetic fields are
neglected, the transmission amplitude is analogous to Zener
breakdown67 and is given by the expression

� = exp−
�

2

�2

e�B�vxvy�
� , �19�

where the Fermi velocities vx, vy �vF are taken at the related
crossing point of the bare bands and �=2Vs is the gap in-
duced by SDW order. Using the mean-field dependence �Eq.
�18�� of the SDW gap, the doping range where the transmis-
sion amplitude is of O�1� is of the order

�x � e�vF
2B/�V0

2�xc � 5.3 � 10−3Bxc,

where we employed V0=0.15 eV and the universal Fermi
velocity68 vF=2.3�107 cm /s. Considering magnetic fields
of O�10 T�, this doping range is well separated from the
important value x=1 /8.

3. Nernst signal as a function of temperature

We now turn to the temperature dependence of the Nernst
coefficient. In order to analyze how our quasiparticle calcu-
lation compares with experiment, we model the effects of
finite temperature by a temperature-dependent spin-stripe po-
tential V0

�1−T /Tsp, with Tsp�60 K at x=1 /8 in
La1.6−xNd0.4SrxCuO4 as observed by neutron scattering.69 In
addition, we model the temperature dependence of the qua-
siparticle scattering rate by various parameterizations, e.g.,
by the linear behavior �−1=a+bT, with b=a /70 K, such that
�−1�T=0��2�0

−1�T=70 K�.70 �Here, a
�0
−1 remains a free

parameter.� Since the Nernst coefficient is proportional to the
relaxation time, this temperature dependence has no major
influence on the overall shape of the coefficient. Our numeri-
cal results, Fig. 7, show a peak in the Nernst coefficient at

around T=20 K. Comparing this peak with the peak struc-
ture of height 50 nV/�KT� observed in Nernst measurements
in La1.8−xEu0.2SrxCuO4,17 our calculation requires a reason-
able relaxation time ��0.5� / �kBT� to reproduce this peak
height if the scattering rate is assumed to be proportional to
temperature, as observed experimentally in most parts of the
Brillouin zone.70

For a comparison to experiments, it has also to be consid-
ered that a positive rise in the Nernst coefficient is already
observed at twice the charge-ordering temperature,
T=2Tch.

17 Therefore, it appears that already stripe fluctua-
tions can enhance the Nernst coefficient.

C. Nernst effect from charge modulations

Long-range static charge order has been observed mainly
in 214 cuprates, using neutron and x-ray scattering.25,26 In
addition, short-range static modulations in the charge sector
have been detected on the surface of underdoped
Bi2Sr2CaCu2O8+
 and Ca2−xNaxCuO2Cl2.47 However, reli-
able information about the amplitude of the charge modula-
tion is lacking. Most scattering experiments are not directly
sensitive to the charge modulation, with the exception of
resonant soft x-ray scattering on La15/8Ba1/8CuO4 �Ref. 71�
whose quantitative analysis �which gave a factor of 4 modu-
lation of oxygen hole densities� is, however, model depen-
dent. From the STM data47 one may infer a typical modula-
tion amplitude in the charge sector of �20¯30%, if the
contrast in the tunneling asymmetry is interpreted as density
modulation.

Charge order �i.e., order in the spin-singlet sector� may
exist without spin order, both at T=0 and at finite
temperatures.35 The latter is clearly seen, e.g., in
La1.8−xEu0.2SrxCuO4 in the temperature range between Tch
�80 K and Tsp�45 K near x=1 /8.

In this section, we consider the effect of charge-only
modulations on the Nernst coefficient. As discussed in Sec.
II B, order in the charge sector may be described by modu-
lated on-site potentials for site-centered stripes or by a spa-
tially modulated hopping amplitude �describing bond order�
in the case of bond-centered stripes. Sample results for the
Nernst coefficient are shown in Fig. 8.

A few remarks are in order. First, charge order with
charge modulation below 30% cannot produce closed elec-
tron orbits, as shown in Fig. 2 and only holelike orbits
emerge. For site-centered stripes, this was already stated in
Ref. 22. The direction-averaged Nernst coefficient shown in
Fig. 8 is negative �or positive but small� for both site-
centered and bond-centered charge orders. Overall, the mag-
nitude of the signal is also rather small for reasonable poten-
tial strengths �
t=0.055 eV leads to 20% �30%� modulation
of vertical �horizontal� bond density while site-centered
stripes with Vc=0.1 eV lead to 30% modulation of charge
density�. Thus, it cannot account for the positively enhanced
Nernst coefficient which has been measured in presence of
stripe order.17 One interesting feature of Fig. 8�b� is the large
anisotropy of � in the range 
t�0.06¯0.08 eV. This can
be traced back to elongated hole pockets as in Fig. 2�a�
which exist in this parameter range. Everywhere else the
Nernst anisotropy is moderate or small.

FIG. 6. Doping dependence of the Nernst coefficient for
period-8 antiferromagnetic stripes, assuming a doping dependence
of the stripe order described by Eq. �18� and V0=0.15 eV. It can be
seen that the Nernst coefficient is similarly enhanced near x=1 /8
for both types of stripe order.
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D. Combined spin and charge modulations

We are thus lead to consider the effects of combined spin
and charge stripe orders. Adding charge order on top of spin
stripe order has the effect of breaking up closed electron
orbits into open orbits for sufficiently strong charge order,
see Fig. 4. It is therefore natural to expect that transport
properties resulting from pure spin stripe order will qualita-
tively change if charge stripe order becomes too strong. For
on-site modulations, a quantitative measure for charge modu-
lation is the relative local deviation from the mean conduc-
tion electron density. In the site-centered case, a deviation of
20% corresponds to Vc=0.07 eV in presence of a spin po-
tential of Vs=0.1 eV. It turns out that the Nernst coefficient
remains strongly enhanced for charge potentials of up to
about Vc=0.05 eV while the coefficient becomes very small
or negative for stronger charge potentials, see Fig. 9�c�. This
behavior would therefore be compatible with the normal-
state Nernst coefficient in La1.6−xNd0.4SrxCuO4 if charge or-
der leads only to modulations of 15% or below in the charge
sector. A similar behavior is obtained for bond-centered spin
stripes with additional bond modulations, shown in Fig. 10.
For a strong bond modulation of 
t=0.055 eV with a
kinetic-energy modulation of about 20–30 %, the Nernst co-
efficient is negative only in a small range of spin-stripe po-
tential, Fig. 10�a�. Finally, if the spin-stripe potential is larger
than Vs=0.1 eV �as is required to produce a maximal local
moment of 0.2�B or more�, the Nernst coefficient is positive
also for the large bond modulation of 
t=0.055 eV. In order
to account for the observed positive normal-state Nernst
coefficient,17 this behavior suggests rather a bond-centered
nature of charge order in La1.6−xNd0.4SrxCuO4 if the modula-
tion in the charge sector exceeds 15%.

IV. NERNST EFFECT BELOW DOPING x=1 Õ8

The underdoped regime of the cuprates with hole dopings
below x=1 /8 is of interest for various reasons. First of all,
the ordering wave vector in stripe-ordered 214 compounds is

strongly doping dependent, 	s�x, in contrast to the constant
modulation period observed for x�1 /8. In addition, recent
high magnetic field experiments on underdoped YBa2Cu3Oy
at hole doping of about x=0.1 have reported quantum oscil-
lations, interpreted in terms of multiple small Fermi
pockets18,72 and a negative Hall coefficient.72

Very recently, also a negative normal-state Nernst coeffi-
cient has been reported in underdoped YBa2Cu3Oy,

27 which,
moreover, was found to display a strong spatial anisotropy.31

We note that in YBa2Cu3Oy, tendencies toward stripe order
appear weaker than in 214 materials. While incommensurate
low-energy spin fluctuations have been observed over a large
doping range of YBa2Cu3Oy, which become static around y
=6.45, there is no clear-cut evidence for charge order in this
material.

In the following, we consider two cases of stripe order
with collinear spin order of periods 10 and 16 in order to
analyze the normal-state Nernst coefficient corresponding to
far underdoped samples. Period 10 is motivated by the dop-
ing level x=0.1 where quantum oscillations have been re-
ported and period 16 is motivated by the neutron scattering
work on YBa2Cu3Oy with y=6.45 where incommensurate
correlations at Q� s=2��0.5�	s ,0.5� with 	s�0.06 were
detected.21,40 As before, we will neglect the interlayer hop-
ping part of the dispersion as well as effects of bilayer split-
ting and the ortho-II potential. �Note that various experi-
ments have been performed on nonortho-II ordered samples,

FIG. 7. Temperature dependence of the Nernst coefficient for
period-8 antiferromagnetic stripes. Upon increasing temperature,
the Nernst coefficient increases strongly to a large positive value
which becomes maximal at around 20 K. Slightly below the order-
ing temperature Tsp�60 K, the coefficient becomes negative, as
observed in experiment. The different scattering rates have been
parametrized with a=�0

−1, b=a /70 K, and c=a /800 K2, and we
set V0=0.1 eV.

(b)

(a)

FIG. 8. Nernst effect for period-4 charge-only stripes at doping
x=1 /8 as a function of �a� site-centered chemical-potential modu-
lation and �b� bond-centered bond modulation. The direction-
averaged Nernst coefficient is clearly either negative or much less
enhanced than for spin stripe order for site-centered stripe order. In
addition, it is small everywhere where modulation in the charge
channel does not exceed 30%, corresponding to 
t�0.06 eV and
Vc�0.1 eV. The large anisotropy in panel �b� is due to the pres-
ence of extremely elongated hole pockets.
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e.g., quantum oscillations have been reported for such
samples.73�

A. Period-16 stripe order

Following Ref. 23, we will approximate the experimen-
tally detected21,40 incommensurability 	s=0.06 by the ratio-
nal value 1/16 in order to obtain the reconstructed Fermi
surface from the eigenvalues of a finite matrix. In this ap-
proximation, gaps of order 2�m�2Vs

m / tm−1 with m�1 are
neglected. For experimentally relevant field strengths of 10 T
or more, these gaps are broken through if Vs t� t1 and can
indeed be neglected. This is especially the case for the ratio
Vs= t1 /6 used in Ref. 23, for which the transmission ampli-
tude through the m=3 gap in B=20 T is �94.1% �according
to formula �19�, using vF=2.3�107 cm /s �Ref. 68��. In ad-
dition, we neglect also all other gaps with m�1. These are
either broken through by magnetic breakdown for m�2 or

they do not lead to closed orbits �m=2�, as discussed in Ref.
22.

Including both spin and charge orders to our modeling
leads to the 16�16 Hamiltonian matrix

H =�
�k Vs

� Vc
� . . . Vc Vs

Vs �k+Qs
Vs

� . . . 0 Vc

Vc Vs �k+2Qs
. . . 0 0

] ] ] � ] ]

Vc
� 0 0 . . . �k+14Qs

Vs
�

Vs
� Vc

� 0 . . . Vs �k+15Qs

� .

�20�

Again, momentum dependence of the scattering potentials
has been dropped in Eq. �20� and can be restored by labeling
a potential connecting energies with momenta k+q and k
+q+Qc/s

� with the momentum k+q in the matrix, Eq. �20�.
Results for the Nernst coefficient of period-16 spin stripe
order are shown in Fig. 11. The modulation parameter Vs can
again be connected to the magnitude of ordered moment. As
stated above, the experimentally detected moment increases
from 0.05�B at zero field to 0.07�B at 15 T,21 which suggests
that in a field of 50 T as applied in quantum oscillation
measurements an ordered moment of significantly above
0.1�B may be reached. Note that the maximum local moment
in a collinear stripe structure is larger than the one inferred
from neutrons which averages over the oscillation period.

(b)

(a)

(c)

FIG. 9. Nernst effect for site-centered period-8 stripes with com-
bined spin and charge orders. �a� Fixed Vc=0.03 eV as a function
of Vs. �b� Fixed Vc=0.1 eV as a function of Vs. �c� Fixed Vs

=0.1 eV as a function of Vc. For a spin-stripe potential of Vs

=0.1 eV, charge potentials above the moderate value Vc

=0.05 eV lead to a negative or small Nernst coefficient, see panel
�c�.

(b)

(a)

FIG. 10. As in Fig. 9 but for bond-centered period-8 stripes. �a�
Fixed 
t=0.055 eV as a function of Vs. �b� Fixed Vs=0.09 eV as a
function of 
t. As is depicted in panel �a�, for a wide range of
spin-stripe potentials below Vs�0.09 eV the Nernst coefficient is
positively enhanced. �Vs=0.1 eV corresponds to an ordered mo-
ment of �0.3�B�. For bond modulations 
t�0.05 eV, the Nernst
coefficient can remain positive, see panel �b�.
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Taken together, we consider values of Vs�0.07 eV to be
appropriate to cause a negative Nernst signal. From the ex-
perimental results reported in Ref. 27 and our results in Fig.
11, we then would infer that field strengths of around 20–30
T are sufficient to produce a large negative normal-state
Nernst coefficient in underdoped YBa2Cu3Oy. We assume
that effects of Landau quantization are negligible in this re-
gime.

B. Period-10 stripe order

Assuming 	s=x for doping x�1 /8 �as observed in 214
cuprates�, a doping of x=0.1 corresponds to Qs=��4 /5,1�,
leading to period-10 spin stripe order. In this case, it is not
possible that both charge and spin modulations have extrema
positioned on the bond centers and we will assume a site-
centered stripe geometry in the following.

The Hamiltonian matrix corresponding to this type of or-
der is thus analogous to the model formulated in Eq. �20� and
can be expressed by a 10�10 matrix with the appropriate
ordering wave vector. We neglect a corrugation of the Fermi
surface along the z direction, which has so far only been
observed in YBa2Cu3Oy. Typical Fermi surfaces resulting
from this model are described in Fig. 14.

The Nernst coefficient resulting from pure spin stripe or-
der shows a change to negative sign at a spin potential
strength of Vs�0.09 eV corresponding to a maximal local
moment of 0.25�B, remaining negative up to a maximal or-
dered moment of 0.4�B, see Fig. 12�a�. The negative sign
can be explained by the shrinkage of the small electronlike
pockets shown in Fig. 14 upon increasing Vs above Vs
=0.1 eV, leading to a dominance of the closed holelike or-
bits. As we checked numerically, for these orbits �xx�xy
��xy�xx.

Since both �xx and �xy are positive for holelike carriers,
the resulting Nernst coefficient has to be negative. Adding
charge order has the effect to finally eliminate the electron-
like orbits �see Fig. 14�b��. This stabilizes a negative Nernst
coefficient for charge potentials corresponding to up to 30%
charge modulation, see Fig. 12�b�.

A discussion of the finite temperature properties of the
Nernst coefficient is analogous to the case of period eight
stripe order. Assuming a mean-field dependence Vs�T�
=V0

�1−T /Tsp with V0=0.12 eV and Tsp=50 K taken from
neutron-scattering experiments,69 the resulting Nernst coeffi-
cient shows the two sign changes depicted in Fig. 13. These
features are robust against specific parameterizations of the
quasiparticle scattering rate �−1, as long as its temperature
dependence is not too strong. In conclusion, in underdoped
La1.6−xNd0.4SrxCuO4 samples with hole concentrations of

FIG. 11. Nernst coefficient �yx for a period-16 SDW order as a
function of Vs with x=0.1. For Vs�0.07 eV �corresponding to a
maximal local moment of m�0.20�B� the Nernst coefficient turns
negative with an enhanced amplitude in comparison to the nonor-
dered state. Note that in a stripe �or SDW� picture for YBa2Cu3Oy,
the stripes run along the b axis �as inferred from neutron scattering
�Refs. 21 and 40�� and our �yx corresponds to the Nernst signal with
�� T along the a axis.

(b)

(a)

FIG. 12. Nernst effect for site-centered period-10 stripe order.
Spin only stripe order �a� leads to a negative Nernst coefficient for
spin potentials above Vs=0.09 eV. �b� Adding additional charge
order to a spin potential of Vs=0.1 eV does not change the sign of
the Nernst coefficient for charge potentials Vc�0.1 eV, which cor-
respond to realistic charge modulations of up to 30%.

FIG. 13. Nernst effect for period-10 stripe order at finite tem-
peratures. Upon decreasing temperature to below about 25 K, the
Nernst coefficient changes sign and becomes negative. Upon in-
creasing temperature above about 25 K, the coefficient becomes
positive and significantly enhanced. Slightly below the ordering
temperature Tsp�50 K, the coefficient becomes negative again.
The different scattering rates have been parameterized with a=�0

−1,
b=a /70 K, and c=a /800 K2, and we set V0=0.12 eV.
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about x=0.1 our result predicts a negative peak in the Nernst
coefficient as a function of temperature. To observe this
peak, eventually large magnetic fields have to be applied in
order to increase spin stripe order and to decrease vortex
contributions to the Nernst coefficient.

V. INFLUENCE OF PSEUDOGAP AND LOCAL PAIRING

The model calculations presented so far have assumed the
existence of metallic quasiparticles, with a large Fermi sur-
face in the underlying symmetry-unbroken state. In under-
doped cuprates, pseudogap phenomena are prominent in the
temperature range Tc�T�T�, where T� is the pseudogap
temperature. According to photoemission experiments on
Bi2Sr2CaCu2O8+
,74 the Fermi surface is partially gapped,
with Fermi arcs remaining near the Brillouin-zone diagonals.
In stripe-ordered La2−xBaxCuO4,75,76 only nodal points ap-
pear to survive as low-energy excitations below the stripe-
ordering temperature.

Although many theories have been proposed to explain
the pseudogap regime—ranging from phase-fluctuating pre-
formed Cooper pairs over competing orders to Mott physics
and strong short-range antiferromagnetic fluctuations—its
origin is still unclear.1–3 As already mentioned in the intro-
duction, experimental data suggests that phase-fluctuating
Cooper pairs alone cannot fully account for the observed
pseudogap phenomena. With a lack of satisfactory descrip-
tions of the pseudogap phase, we restrict ourselves to a quali-
tative discussion in the following.

Regarding the relation between pseudogap and enhanced
Nernst coefficient at intermediate temperatures, different sce-
narios are conceivable, namely, pseudogap and Nernst coef-
ficient may be caused by �i� the same or �ii� different phe-
nomena. While the resistively defined pseudogap
temperature seems to coincide with the onset of a rapid
change in the Nernst coefficient for dopings above 1/8, the
normal-state Nernst coefficient is distinctly peaked near this
doping, whereas the pseudogap continuously increases as the
doping is reduced. We interpret this as evidence for scenario
�ii�. Then, the effect of translational symmetry breaking on
the Nernst coefficient may be investigated, without fully ac-
counting for �other� possible sources of pseudogap
phenomena—this is the logic underlying the approach pre-
sented in this paper. �Note there is little doubt that the ex-
perimentally seen strong enhancement of the Nernst coeffi-
cient at temperatures near Tc is caused by superconducting
fluctuations.�

In strong magnetic fields and at low temperatures, it is
conceivable that the dominant source of corrections to the
quasiparticle picture is given by phase-fluctuating pairing,
with the phase incoherence becoming maximal near Hc2.
One possible explanation how phase fluctuations of the su-
perconducting order parameter are compatible with most of
the phenomenology of the underdoped cuprates has been re-
cently invoked in Ref. 77. In particular, in strong magnetic
fields, appropriate to recent measurements of the Nernst and
Hall effects, the influence of phase fluctuations of the super-
conducting order parameter was argued to lead mainly to a
quasiparticle renormalization. The scattering of the quasipar-

ticles on a fluctuating d-wave order parameter is described
by the self-energy correction77

��k,�� = �0k
2 − i� + �k

�2 + �k
2 + ��2 , �21�

where � is the phase decoherence rate of the order-parameter
amplitude �0 and �0k=

�0

2 �cos�kx�−cos�ky��. This correction
leads to the renormalized quasiparticle dispersion E�k�
=��k�+��k ,�=0�

E�k� = 	k�1 +
�0k

2

�k
2 + ��2� . �22�

Remarkably, the original Fermi surface remains unchanged,
and only renormalization of band masses and quasiparticle
velocities by a factor 1+�0k

2 / ��k
2 +��2� occurs. Since � is of

the order �0
−1 near Hc2, we may expect no qualitative change

in transport properties due to phase-incoherent pairing at
magnetic fields of the order Hc2.

A final remark on Fermi surfaces while various photo-
emission experiments suggest truncated Fermi surfaces in the
form of arcs in the pseudogap regime, other experiments
allow for an interpretation in terms of Fermi pockets, which
may be the result of symmetry-broken states �as, in our case,
stripes�. The issue of arcs vs pockets is not settled, however,
it has been proposed that both matrix-element effects and
disorder are responsible for the invisibility to photoemission
of parts of the pockets.78,79

VI. SUMMARY

We have calculated the normal-state Nernst coefficient in
cuprates in the presence of stripelike translational symmetry
breaking. The calculations were based on a simple quasipar-
ticle picture, combined with a Boltzmann equation approach.
The results demonstrate the role of Fermi pockets for a large
quasiparticle Nernst coefficient. The existence of such pock-
ets depends on details of the symmetry-breaking order, in
particular, charge order alone does not easily generate pock-
ets but spin order is required. Depending on both spatial
period and amplitude of the stripe order, both positive and
negative Nernst coefficients can be generated, with sign
changes as a function of the stripe amplitude which can be
traced back to topological changes in the Fermi surface.

A robust positive Nernst signal was mainly found for
period-8 modulated antiferromagnetic order with Qs
=��3 /4,1�, appropriate for cuprates with doping levels x
�1 /8, as long as the magnetic order is not assumed to be
unrealistically strong. For small charge modulation, there is
little qualitative difference between bond-centered and site-
centered stripes; for larger charge modulation, site-centered
stripes tend to destroy holelike orbits and induce a negative
Nernst coefficient. Charge order alone generates a small and
typically negative Nernst coefficient. Finally, open orbits
contribute a small Nernst signal only because off-diagonal
transport coefficients are small for quasi-one-dimensional
bands.

The single-layer Nernst signal was naturally found to be
anisotropic but the anisotropy was small, �yx /�xy � �0.5,2�,

HACKL, VOJTA, AND SACHDEV PHYSICAL REVIEW B 81, 045102 �2010�

045102-12



for most parameter sets. Exceptions were states with
period-4 modulated charge order shown in Fig. 8. In these
cases, hole pockets with large aspect ratios as shown in Fig.
2�a� can be present in the Fermi surface and can lead to large
anisotropies of the Nernst signal.

Relation to experiments

Let us connect these results to experimental ones for the
Nernst coefficient in cuprates. Clearly, both quasiparticles
and phase-fluctuating pairing will contribute to the Nernst
coefficient, with the latter not being part of the calculation
presented in this paper. This pairing-induced piece of the
Nernst coefficient has been studied before9–12 and is believed
to dominate in a temperature region near the superconduct-
ing Tc, whereas an extra piece has been identified at elevated
temperatures in La1.6−xNd0.4SrxCuO4.17 Our positive quasi-
particle Nernst coefficient for period-8 stripes, Figs. 6 and 7,
is in qualitative agreement with these experimental results.
As a function of temperature, the quasiparticle Nernst signal
peaks below the charge-ordering temperature Tch vanishes
linearly as T→0 and becomes negative at high T, Fig. 7.
�Adding a pairing-induced positive peak at low T would give
a temperature dependence similar to experiment.� Experi-
mentally, the temperature maximum of the extra piece in the

Nernst signal appears to be above Tch, which may be ex-
plained in terms of strong precursor stripe fluctuations not
captured in our mean-field theory. The doping dependence of
the quasiparticle Nernst signal in the doping range 0.12�x
�0.24, Fig. 6, is in qualitative agreement with experiment as
well.

For magnetic modulation periods larger than eight sites,
the quasiparticle Nernst signal displays sign changes as a
function of the modulation amplitude. From this, we predict
sign changes in the Nernst signal as a function of tempera-
ture �in compounds with well-established stripe order� or as a
function of applied field �if the order is primarily field in-
duced�. Indeed, in a recent experiment27 on YBa2Cu3Oy at
y=6.67, corresponding to a doping level of 0.12, the Nernst
effect at a field of 28 T was found to be negative in the
low-temperature limit. The signal showed substantial field
dependence for smaller fields, with large positive contribu-
tions near Tc due to superconducting fluctuations but those
have been argued to be negligible in the regime above 25 T.
Assuming that such fields induce sizeable SDW order with a
modulation period larger than eight �note that the observed
spin correlations40 in YBa2Cu3Oy do not follow the relation
	s�x�, these findings could be consistent with our calcula-
tions. Clearly, experiments on more underdoped YBa2Cu3Oy
samples are called for.

The huge anisotropy of the Nernst signal, found recently
in YBa2Cu3Oy at intermediate temperatures,31 cannot be eas-
ily explained in terms of magnetic stripe states. Instead, an
interpretation80 in terms of nematic order near a Van Hove
singularity appears more appropriate, while stripe order may
set in at lower temperatures �where indeed the experimental
Nernst anisotropy decreases�.
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